A new determinant form of Bessel polynomials and applications
نویسندگان
چکیده
The Bessel polynomials are the unique polynomial solutions, with constant equal to 1, of the differential equation xy ′′ (x) + (2x+ 2)y ′ (x) − n(n+ 1)y(x) = 0 (1) They are important in certain problems of mathematical physic, for example they arise in the study of electrical networks and when the wave equation is considered on spherical coordinates. Many application may be found in [7]. In recent years new interests are arisen in determinant form of Bessel polynomials [9-11]. In this paper we purpose a new determinant form with related recurrence relation. Some application are considered, too. The Bessel polynomials are given in [1] in the form
منابع مشابه
Bessel Polynomials and the Partial Sums of the Exponential Series
Let e k (x) denote the k-th partial sum of the Maclaurin series for the exponential function. Define the (n + 1) × (n + 1) Hankel determinant by setting Hn(x) = det[e i+j (x)] 0≤i,j≤n. We give a closed form evaluation of this determinant in terms of the Bessel polynomials using the method of recently introduced γ-operators.
متن کاملOperational matrices with respect to Hermite polynomials and their applications in solving linear differential equations with variable coefficients
In this paper, a new and efficient approach is applied for numerical approximation of the linear differential equations with variable coeffcients based on operational matrices with respect to Hermite polynomials. Explicit formulae which express the Hermite expansion coeffcients for the moments of derivatives of any differentiable function in terms of the original expansion coefficients of the f...
متن کاملDeterminants and permanents of Hessenberg matrices and generalized Lucas polynomials
In this paper, we give some determinantal and permanental representations of generalized Lucas polynomials, which are a general form of generalized bivariate Lucas p-polynomials, ordinary Lucas and Perrin sequences etc., by using various Hessenberg matrices. In addition, we show that determinant and permanent of these Hessenberg matrices can be obtained by using combinations. Then we show, the ...
متن کاملThe Operational matrices with respect to generalized Laguerre polynomials and their applications in solving linear dierential equations with variable coecients
In this paper, a new and ecient approach based on operational matrices with respect to the gener-alized Laguerre polynomials for numerical approximation of the linear ordinary dierential equations(ODEs) with variable coecients is introduced. Explicit formulae which express the generalized La-guerre expansion coecients for the moments of the derivatives of any dierentiable function in termsof th...
متن کاملNew Approaches to Duals of Fourier-like Systems
The sequences of the form ${E_{mb}g_{n}}_{m, ninmathbb{Z}}$, where $E_{mb}$ is the modulation operator, $b>0$ and $g_{n}$ is the window function in $L^{2}(mathbb{R})$, construct Fourier-like systems. We try to consider some sufficient conditions on the window functions of Fourier-like systems, to make a frame and find a dual frame with the same structure. We also extend t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mathematics and Computers in Simulation
دوره 141 شماره
صفحات -
تاریخ انتشار 2017